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Chapter 2: THE ONE-PLUS-ONE RUNUP 
MODEL

 

This chapter presents a variable grid finite-differences approximation of the characteristic

form of the shallow-water-wave equations without artificial viscosity or friction factors to

model the propagation and runup of one-dimensional long waves. This model is referred to

as VTCS-2 and is applied to the calculation of the evolution of breaking and nonbreaking

waves on sloping beaches. Then, the computational results are compared with the analyti-

cal solutions, other numerical computations and with laboratory data for breaking and non-

breaking solitary waves. The model is found to describe the evolution and runup of non-

breaking waves very well, even when using a very small number of grid points per wave-

length. Even though the method does not model the detailed surface profile of wave

breaking well, it adequately predicts the runup of plunging solitary waves without ad-hoc

assumptions about viscosity and friction. This appears to be a further manifestation of the

well-documented but unexplained ability of the shallow water wave equations to provide

quantitatively correct runup results even in parameter ranges where the underlying assump-

tions of the governing equations are violated.

 

2.1 Introduction

 

The problem of determining the two-dimensional evolution (propagation over one-dimen-

sional topography) and runup of long waves on a sloping beach is a classic problem in hy-

drodynamics. Analytical solutions for the runup of nonbreaking sinusoidal, cnoidal and sol-
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itary waves exist, and recently there have been reports of numerical solutions for breaking

periodic, solitary and N-waves.   The understanding of the solution of this 1+1 problem is

believed to be of importance for solving the 2+1 runup problem, i.e., two propagation di-

mensionless (Liu et al. 1991). To this end, the National Science Foundation of the United

States has funded a multicenter study to document existing 2-D and 3-D codes now under

development and the results were compared in the 1995 International Workshop of Long

Wave Runup, in Friday Harbor, Washington.

There is one analytical (Synolakis 1987a, Tadepalli and Synolakis 1994) and four

existing numerical formulations to the canonical problem 2-D long wave problem, i.e., a

long wave propagating over constant depth first and then climbing up a sloping beach.

Three formulations are essentially 1-D depth-averaged approximations of the 2-D problem,

i.e., solutions of the shallow water wave equations using the method of characteristics, us-

ing Lax-Wendroff-type conservation scheme and solutions of the Boussinesq equations.

Solutions of the 2-D “potential” flow problem are now available. These approaches will be

described below. Our method is a novel variable-grid finite difference solution of the shal-

low water wave equations, with certain distinct advantages to both solutions based on the

method of characteristics or on the Lax-Wendroff scheme. 

Stoker (1957) presented perhaps the first numerical solution of the shallow-water

wave equations using the method of characteristics for a sloping beach. The advantage of

this method is the exact relationship between physical variables along the characteristic

lines for simple bottom topography. The path of the shoreline during runup or rundown is
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a characteristic line allowing for efficient and direct computation of the shoreline path. The

method produced very accurate results for simple cases, but a new computational space

grid had to be calculated every time step. When characteristic lines crossed at the breaking

point, the shoreline evolution had to be treated in a different manner. Since Stoker's work,

more evolved solution methods (Freeman and Le Mehaute 1964, Iwasaki and Togashi

1970) improved the computational efficiency, but they predicted runup values which dif-

fered substantially from laboratory observations. Also for non-uniformly sloping beaches,

this method is cumbersome. The method of characteristics has now been largely aban-

doned.

Finite-difference type methods use time-independent space grids; unknown vari-

ables are computed at fixed grid points distributed over the computational area. To allow

for the possible calculation of bore propagation, Hibbert and Peregrine (1979) proposed

solving the equations in their conservation form using the Lax-Wendroff scheme (Richtm-

eyer and Morton 1968); they were able to calculate the evolution of a uniform bore up a

sloping beach. Their work was ground-breaking; before then it had not been possible to cal-

culate wave runup and obtain physically realistic solutions. The problem had been the nu-

merical treatment of the moving boundary past the initial shoreline. Although their initial

algorithm was not very robust (see discussion in Synolakis 1986, 1989), subsequent ver-

sions (Packwood and Peregrine 1981, Kobayashi et al. 1987) further refined this practice

to what is now the most popular method for solving the shallow water wave equations.

However, the critical and supercritical flow conditions in the vicinity of the shoreline, i.e.,

when the Froude number is greater than one, often causes numerical instabilities (Synolakis
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1989). To suppress them, Packwood (1980) and Kobayashi and associates (1987, 1989,

1990, 1994) used additional dissipative terms in the finite-difference equations. Rumming

and Kowalik (1980) and Kowalik and Bang (1987) used a stabilizing algorithm at regular

intervals of time or filtering of the numerical solution. All these methods introduce ad-hoc

additional parameters such as artificial viscosity coefficients and friction factors. Even

though many of these solutions work well for practical problems, the need to identify ade-

quate values for these additional parameters diminishes their appeal. 

Nonbreaking numerical solutions of the Boussinesq equations for the canonical

problem are reviewed by Liu et al (1991). Briefly, Goto (1979) proposed a Lagrangian for-

mulation of the Boussinesq equations and Goto and Shuto (1983) solved these equations

by introducing an artificial viscosity term. Zelt (1991) developed a Lagrangian finite-ele-

ment method for calculating the runup of breaking solitary waves; his solution uses an ar-

tificial viscosity term and a friction term. With the exception of the profile of waves at

breaking, his method produces superior modeling of nonbreaking-wave laboratory experi-

ments, if only one calibrates the model with laboratory maximum runup data known a pri-

ori.

Nonbreaking BEM solutions of the two-dimensional potential flow approximation

of the canonical problem were introduced by Dold and Peregrine (1986). These methods

solve Laplace's equation directly subject to the unadulterated forms of the kinematic and

dynamic boundary conditions, and they allow for calculating of the vertical structure of the

velocity field. Grilli et al. 1989, Subramanya and Grilli (1994) and Grilli et al. (1994) pro-
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posed a very robust solution for the calculation of the runup of solitary waves with initial

height close to the limiting wave height. This by itself was a remarkable achievement, not

only because they demonstrated good agreement with laboratory data, but also because, ap-

parently, their method does not include any ad-hoc coefficients and it does not need to be

calibrated. However, even though they have considered breaking waves, they have calcu-

lated their evolution up to the breaking point, but not the maximum runup. Also, this meth-

od is still quite computationally intensive limiting the size of the flow domain which can

be modeled.

Here, a new variable-grid finite-difference formulation of the shallow water wave

equations is presented which allows the calculation of the evolution of breaking waves

without introducing any ad-hoc coefficients. The method is simple, explicit and direct, and

it produces excellent agreement with laboratory data for the maximum runup of nonbreak-

ing and breaking waves. The method also predicts wave evolution profiles which adequate-

ly model the laboratory observations. The computational simplicity and efficiency of this

method makes it suitable for calculations over two-dimensional topography. This model

will be henceforth referred to as VTCS-2.

 

2.2 Mathematical formulation

 

Consider the propagation of long waves in a one-dimensional channel with variable depth

as in Figure 2.1. The physical problem is described by the shallow-water-wave equations:

,
(2.1)ht + (uh)x = 0

ut + uux + ghx = gdx
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Figure 2.1 

 

Definition sketch for solitary wave climbing up sloping beach

with the initial conditions

(2.2)

where ,  is the wave amplitude,  is the undisturbed wa-

ter depth,  is the depth-averaged velocity, 

 

g

 

 is the acceleration of gravity. The origin

of the coordinate system is at , and  increases monotonically seaward.

To solve boundary value problems for (2.1) the shallow-water equations are written

in characteristic form. The system of equations (2.1) is a hyperbolic system with all real

and different eigenvalues and it can be written in a characteristic form as follows,

 (2.3)

where ,  are the “Riemann invariants” (for short) of this sys-

tem and  are the eigenvalues.
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Figure 2.2 

 

 Sketch of the characteristic lines of the equations (2.3).

The characteristic form of the equations is used to establish well-posed boundary

conditions for fixed boundaries. Consider solution of the equations (2.3) in the area with

fixed boundaries 

 

x

 

 = 

 

X

 

1

 

 and 

 

x

 

 = 

 

X

 

2

 

 in space and within time interval from 

 

t

 

 = 0 to 

 

t

 

 = 

 

T

 

1

 

, as

shown in Figure 2.2. The system of equations (2.3) has two families of characteristic lines

with inclinations  and . When the Froude number ( ) is less than one,

 is positive and  is negative; then only one condition is necessary on each boundary,

since only one characteristic line reaches the boundary from inside the computational area.

The condition is set only for the invariant corresponding to the outgoing characteristic, be-
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cause the other invariant value is carried to the boundary along the incoming characteristic

line. For example, the boundary condition for a totally reflective boundary 

 

x

 

 = 

 

X

 

1

 

 is set for

the Riemann invariant 

 

p

 

 as follows,

(2.4)

while the reflective condition for the boundary 

 

x

 

 = 

 

X

 

2

 

 is set for 

 

q

 

, as

(2.5)

The existing finite-difference solutions of Hibberd and Peregrine (1979), Packwood

(1980) and Kobayashi, et al. (1987) and their derivatives, all use the characteristic form of

the equations to develop the seaward boundary conditions, however, they use the original

form of the equations (2.1) for discretization. Since these solutions are not in terms of the

characteristic variables, it is necessary to calculate one additional difference equation nu-

merically, thereby introducing additional numerical error. Discretizing the characteristic

form (2.3) directly makes possible the use of the exact expressions for Riemann invariants.

Gustafsson and Kreiss (1979) applied the characteristic approach to develop an ab-

sorbing boundary conditions for “arbitrary” time dependent problems. A totally absorbing

boundary allows waves to go through (absorb) but it does not allow any waves to reflect

back in the computation region. In characteristic terms, the invariant on outgoing charac-

teristics does not carry any disturbances back into the computational area. Since only one

boundary condition is necessary for the boundary 

 

x

 

 = 

 

X

 

2

 

, the requirement of no wave mo-

tion on that characteristic implies that , then . In addition, we

assume that the water depth is constant outside the area of computation and equal to the

p = $q

q = $p.

u = 0, " = 0 q 2 gd x( )–=
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depth at the right boundary , then equation (2.3) implies that 

 

q

 

 is constant outside the

area and on that boundary. Therefore, the appropriate condition is

 (2.6)

 

Figure 2.3 

 

 Sketch of the characteristic lines for the absorbing boundary condition.

Unfortunately, it is difficult to use the same approach for developing boundary con-

ditions for the shoreline boundary for runup computations. The shoreline is moving, the
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shoreline path is a characteristic line itself, and both incoming and outgoing characteristics

cross and become one at the instantaneous shoreline point. This boundary condition is dis-

cussed in the next section.

 

2.3 The finite-difference method

 

2.3.1 The finite-difference scheme

 

A finite-difference form of (2.3) was developed using the method of undetermined coeffi-

cients assuming an explicit scheme and a second-order approximation of equations (2.3) in

space and first-order in time. The method is described by Godunov (1971, section 7.22.2).

It should be noted that no ad-hoc coefficients, no additional artificial-viscosity type or sta-

bilizing algorithms are used. The proposed finite-difference form of equations (2.3) is:

(2.7)

where , 

 

%

 

x

 

 is space step, 

 

%

 

t

 

 is time increment, and

(2.8)

The condition of the stability for the scheme is simply the Courant-Friedrichs-Lewy (CFL)
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implying that the wave should not propagate more than one grid point during the time step

.

The finite-difference equation (2.7) is used for the computation of the unknown

variables 

 

p

 

 and 

 

q

 

 in the interior grid points of the computational area, but can not be used

to compute boundary values. At those points, the boundary conditions (2.4) - (2.6) deter-

mine only one of the two invariants. The other value on the boundary (the value of the Ri-

emann invariant on the incoming characteristic) is computed using one of the equations

(2.3) approximated by an upwind scheme. 

Good accuracy of numerical solutions of any hyperbolic equation is obtained when-

ever there are “enough” grid points per wave length. How many points are “enough” de-

pends on the specific numerical method. The Lax-Wendroff method requires at least twenty

grid points in one wave length to avoid the decay of the modeled waveform (Shuto et al,

1985). The proposed method only requires about ten points per wavelengths, as will be dis-

cussed later.

A variable grid method is used for consistent resolution throughout the flow do-

main. During shoaling, the wavelength becomes shorter. If one used a uniform grid

throughout the computational domain then one would experience either loss of accuracy in

the near-shore field or loss of efficiency through the use of very fine grid. Either approach

does not produce consistent resolution. To allow for a variable grid with space step

, equations (2.7) are modified by replacing the first-order derivative opera-

tor

%t

%xi = xi+1 $ xi
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,
(2.10)

by 

(2.11)

The second-order derivative operator

(2.12)

is replaced by

(2.13)

Operators above are described in equation (2.8). It is important to use the second order de-

rivative operator in the form (2.13) instead of 

(2.14)

The latter operator  introduces a substantial zero-order truncation error associated with the

grid ratio ; hence  is not only inaccurate but also inconsistent.

Both operators (2.11) and (2.13) are correct to first order only, in comparison with

the operator (2.12) appropriate for a uniform grid and correct to second order, because of

the additional truncation error associated with the grid ratio 

 

s

 

. Using more complicated op-

erators with weighted values for the nonuniform grid scheme, it is possible to maintain sec-
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ond-order accuracy in the first but not in the second derivative operators. However, the

truncation error of (2.13) is the smallest possible among the 3-point second derivative ap-

proximations (Fletcher, C. A. J., 1991, section 10.1.5). For computational efficiency and

for consistency in the order of approximation, (2.11) and (2.13) were used instead of using

a higher order approximation for the first derivative.

The stability criterion (2.9) for this variable grid scheme becomes

(2.15)

To maintain the number of grid points per wave length constant during the wave propaga-

tion, the grid spacing must change with the wave celerity. Using the long wave approxima-

tion of the celerity 

, (2.16)

the grid ratio 

 

s

 

 is always given by 

(2.17)

Therefore, the Courant number remains nearly constant over the region where nonlinear ef-

fects are small. With this method, “linear” waves propagate exactly one space step during

time period , and the number of grid points per wave length remains constant.
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On the dry bed, where  

 

c

 

 cannot be estimated a priori. In this region, a con-

stant equal to the smallest step in the “wet” area is used, assuming that the wave does

not propagate faster on a dry land than over water. (See Synolakis (1986), figure 3.5.5, or

Synolakis (1987b), figure 3.) For breaking waves, the bore propagation speed on dry land

can be larger than the speed over water (Yeh et al, 1989, figure 6, and our Figure 2.15.) In

this case the entire computation is reinstated with a smaller time step, until the CFL condi-

tion (2.15) is satisfied for the entire runup process.

 

2.3.2 The boundary conditions

 

To calculate the evolution on the dry bed, it is necessary to use moving boundary condi-

tions. Here, the Froude number may be greater than one near the shoreline point, implying

that both characteristic families have the same inclination in this region. Hence, it is impos-

sible to use the direct relationships between the Riemann invariants of the type (2.4) - (2.6)

near the shoreline. Therefore, approximations of the boundary values from previous space

nodes are used as described in Figure 2.4.

The shoreline algorithm uses a time-dependent space step  of the last node of

the computational area. The objective is maintain the shoreline boundary point (represented

consecutively by A, B or C on Figure 2.4) on the surface of the beach during the computa-

tion. We therefore adjust the length of the last space step  every time step, so that the

shoreline point (A) is at the intersection of the beach with the horizontal projection of the

last “wet” point, for example n-1 node on Figure 2.4. The value of the velocity on the shore-

line node is equal to the velocity on the previous “wet” point.
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Figure 2.4 

 

Definition sketch for shoreline computation

Additional grid points are introduced as follows. Referring to Figure 2.4, at the time

interval between times  and , there are n grid points (n-1 fixed grid points and the

instantaneous shoreline, points A or B) in the computation. At time , when the

shoreline point (C) reaches beyond the next fixed grid point (n-th fixed node of the constant

dry bed grid), this n-th fixed point is introduced between the shoreline point (C) and the

previous internal fixed node (n-1) and . Now, there are n+1 grid points in the

computational area and we repeat the process. During rundown, we reduce the number of

dry grid points sequentially in an analogous manner.
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An absorbing boundary condition is used at the seaward boundary. As discussed

earlier,  can be computed directly from (2.6). The other invariant 

 

 

 

must be determined

by the governing equations (2.3). The following simple first-order upwind scheme is then

used to compute 

 (2.18)

where  are values of the variables on the seaward boundary.

 

2.3.3 On dispersion, absorption and mass conservation

 

A series of simple numerical experiments was conducted to test the implementation of the

absorbing boundary condition and to determine the minimum number of grid points per

wavelength required to achieve propagation of “linear” waves with no change in shape. The

experiments modeled the propagation of a long wave over a constant depth region. The left

boundary of the computational area 

 

x/d 

 

=

 

 

 

0 was set to be reflective and described by the

conditions (2.4), while the right boundary 

 

x/d

 

 = 400 was absorbing and is described by

(2.6). The initial conditions were half-elliptical surface profile at the center of the compu-

tational area with a dimensionless amplitude 

 

H/d = 0.01 at the crest of the ellipse with zero

initial velocity. This profile instead of a solitary wave profile was chosen, not only because

it is steeper and thus a more serious test of the method than an equivalent solitary wave, but

because it also allowed a definite number of grid points per wavelength; the effective wave-

length of a solitary wave can be defined in various ways, but it is not always possible to

ensure consistently an integer number of grid points per wavelength.
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Figure 2.5 The results of numerical computation for checking the characteristics of VTCS-
2 with a 0.005 elliptic wave propagating over constant depth region. Normalized surface
elevations for two initial conditions (solid line l/d = 50 and dotted line l/d = 20) as func-
tions of the normalized time at 300 depths from the reflective boundary. The profiles on the
left are the manifestations of the waves propagating towards the absorbing boundary, and
the profiles near the center are the manifestations of the equivalent waves after reflecting
off the reflective boundary as they propagate towards the absorbing boundary.

The initial profile produced two waves of the same shape with half of the initial am-

plitude propagating in opposite directions. The evenly-spaced numerical grid covered a

computational area of 400 depths with 81 nodes, and the dimensionless time step was de-

termined from (2.15) as  = 4.85. Different wavelengths were used for the compu-

tations. Typical results for semi-elliptic initial disturbances with dimensionless wave-

lengths l/d = 50 (solid line) and l/d = 20 (dotted line) corresponding to 10 and to 4 grid

points per wavelength are shown on Figure 2.5, at 300 depths from the reflective boundary.

Each of the two profiles on the left of the figure shows the wave coming from the source

and propagating towards the absorbing boundary. Each profile near the center of the figure
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is generated after reflection at the reflective boundary. On the other side the latter profiles

do not show significant amplitude decay even for the shortest wave (represented only by 4

grid points), a wave which has already propagated 500 depths or 25 wavelengths. However

effects of numerical dispersion are evident in the short wave which is modeled only with 4

grid points. There is no evidence of reflection from the absorbing boundary.

The mass conservation properties of the scheme were examined by monitoring the

wave volume during test computations. Mass conservation requires that the total volume of

the water involved in the computation remains constant (including the mass flax through

the seaward boundary)

(2.19)

where 3 is the area of computation and  is the seaward boundary.

The mass conservation error  remains within 0.01% during the

computation of the semi-elliptic waves above, even for 4 grid points per wave length. The

error is in the same range during the computation of the runup of solitary waves up a slop-

ing beach, implying that, the moving boundary algorithm does not introduce substantial er-

ror into the computation. 

Deviation from mass conservation are of concern during the breaking process and

in subsequent evolution. The shallow-water wave theory is not valid anywhere near break-
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ing and it does not allow for multivalued solutions. Yet, sufficient evidence suggesting that

numerical results can be physically realistic exists to warrant numerical experimentation.

However either mass conservation errors or “aliasing” errors can be expected. Aliasing er-

rors emerge when the energy associated with shorter wavelengths reappears associated

with longer wavelengths (Hamming, 1973). Mass conservation errors can emerge from the

breakdown of the shallow-water wave model. Our computations of breaking-wave runup

described in section 2.4 suggest that these errors increase with the initial wave height. For

the highest modeled wave (H/d = 0.3), the mass conservation error was 0.7% between the

beginning and the end of the computation, beyond rundown. This wave broke twice during

the computation, both during runup and rundown, as did its laboratory manifestation.

The question arises whether this error is acceptable; only comparisons with the lab-

oratory data can address this question. The comparisons with both laboratory and numerical

data in section 2.4 suggest that this error does not quantitatively affect the predictions. One

can argue that the differences observed in the details of some surface time histories are due

to differences in dissipation rates and not in the mass conservation error. Also, Grilli (per-

sonal communication) solved a similar problem using potential theory and he reported an

error of 1%, which occurred near breaking or shortly thereafter. The 1% error was his cri-

terion for stopping the computation. The 0.7% error of this computation is clearly in the

same range.


